Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands
نویسندگان
چکیده
منابع مشابه
Superlensing with twisted bilayer graphene
The charge susceptibility of twisted bilayer graphene is investigated in the Dirac cone, respectively, randomphase approximation. For small enough twist angles θ ≲ 2° , we find genuine interband plasmons, i.e., collective excitonic modes that exist in the undoped material with an almost constant energy dispersion. In this regime, the loss function can be described as a Fano resonance, and we ar...
متن کاملPhonons in twisted bilayer graphene
Alexandr I. Cocemasov,1 Denis L. Nika,1,2,* and Alexander A. Balandin2,3,† 1E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, Chisinau, MD-2009, Republic of Moldova 2Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California ...
متن کاملBilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene.
Symmetry-breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutrality point. In a quantizing magnetic field, electron interactions can cause spontaneous symmetry-breaking within the spin and valley degrees of fr...
متن کاملThermal conductivity of twisted bilayer graphene.
We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This find...
متن کاملTerahertz conductivity of twisted bilayer graphene.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [σ(1)(ω)] of twisted bilayer graphene was obtained at different temperatures (10-300 K) in the frequency range 0.3-3 THz. On top of a Drude-like response, we see a strong peak in σ(1)(ω) at ~2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2019
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.122.246401